Statistic or Parameter |
Symbol |
Equations |
Excel |
Basic Statistics |
Square root |
Ö |
|
=SQRT(number) |
Sample size |
n |
|
=COUNT(data) |
Sample mean |
 |
Sx/n |
=AVERAGE(data) |
Population mean |
µ |
SX/N |
=AVERAGE(populationData) |
Sample standard deviation |
sx or s |
 |
=STDEV(data) |
Sample Coefficient of Variation |
CV |
100(sx/ ) |
=100*STDEV(data)/AVERAGE(data) |
Linear Regression Statistics |
Slope |
b |
|
=SLOPE(y data, x data) |
Intercept |
a |
|
=INTERCEPT(y data, x data) |
Correlation |
r |
|
=CORREL(y data, x data) |
Coefficient of Determination |
r² |
|
=(CORREL(y data, x data))^2 |
|
|
|
|
Normal Statistics |
Calculate a z value from an x |
z |
=  |
=STANDARDIZE(x, m, s) |
Calculate an x value from a z |
x |
= s z + m |
= s*z+m |
Calculate a z-statistic from an x |
z |
 |
=( -µ)/(sx/SQRT(n)) |
Calculate a t-statistic (tstat) |
t |
 |
=( -µ)/(sx/SQRT(n)) |
Calculate an x from a z |
|
 |
=m + zc*sx/sqrt(n) |
Find a probability p from a z value |
|
|
=NORMSDIST(z) |
Find a z value from a probability p |
|
|
=NORMSINV(p) |
Confidence interval statistics |
Degrees of freedom |
df |
= n-1 |
|
Find a zc value from a confidence level c |
zc |
|
=ABS(NORMSINV((1-c)/2)) |
Find a tc value from a confidence level c |
tc |
|
=TINV(1-c,df) |
Calculate an error tolerance E of a mean for n ³ 30 using
sx |
E |
 |
=zc*sx/SQRT(n) |
Calculate an error tolerance E of a mean for n < 30 using sx. Can also be used for
n ³ 30. |
E |
 |
=tc*sx/SQRT(n) |
Calculate a confidence interval for a population mean m from
a sample mean x and an error tolerance E |
|
x-E< m
<x+E |
|
Hypothesis Testing |
Calculate t-critical for a two-tailed test |
tc |
|
=TINV(a,df) |
Calculate t-critical for a one-tailed test |
tc |
|
=TINV(2*a,df) |
Calculate a p-value from a t-statistic |
p |
|
= TDIST(ABS(tstat),df,#tails) |